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A NOTE ON THE T-IDEAL G E N E R A T E D  
BY S3[X1, X2, X3] 

BY 

G. D. JAMES 

ABSTRACT 

The co-characters of the T-ideal generated by the standard identity s3[x~, x2, x3] 
are determined. 

I. Introduction 

Regev [4] has shown that for n_->9, the co-character of the T-ideal K 

generated by the standard identity s3[xz, x2, x3] over a field F of characteristic 

zero is [n] + 2[n - 1, 1] + a [ n  - 2,2] +/3122, 1 "-4] where a +/3 =< 1. In this note 

we introduce a new technique, and use it to determine the co-characters exactly. 

The space V. of multilinear polynomials of degree n in x l , ' " - ,  x. may be 

identified with the group algebra of the symmetric group S. over F[3], and the 

nth co-character is then, by definition, the character of V., modulo the left ideal 

K. = K N V.. In fact, we shall obtain a precise description of K., which gives an 

easy test whether or not a given element of V. is in K.. 

Since char F = 0, V. = K. E) 3"- for some left ideal Jn, and the problem is to 

determine the character of J.. Since the multiplicity of a character [A] in V. is 

deg [A ], the problem is equivalent to that of finding the character of K.. We shall 

prove 

THEOREM 1.1. (i) For n <- 2, K ,  = O. 

(ii) For n = 4, ./4 = [4] + 2[3, 1] + [22]. 
(iii) For n = 3 or n _-> 5, J . = [ n ] + 2 [ n - l , 1 ] .  

The new results are those for n _-> 5. The theorem is trivial for n -< 3, and we 

merely indicate how to apply our method to obtain another proof for the case 

n = 4 .  
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2. Outline of the method 

DEFINITIONS. Let y~, . . . ,  y. be n commut ing  variables. Define the FS, -  

modules M ('-I'1) and M <'-2'2) by 

M <"-''~) = Sp~{y, I1 =< i < n}. For 7r E S., let Try, = Y~o)- 

M (n-2'2) = Sp~{y~yj I 1 < i < j = n}. Let Try,y, = Y,,(,)Y~0). 

Then M (~ and M ~'-2'2) are the permutation modules of S, on the Young 

subgroups S, ~• $1 and S,-2• $2 respectively. It is well-known that their 

characters are [n] + [n - 1,11 and [n] + In - 1, 11 + In - 2, 21 respectively. 

Let W <'-:A> be the submodule of M ('-1"1) generated by y2 - -  yl, and W ("-2'z) be 

the submodule of M ('-2'2) generated by y 3 y a - y l y 4 - y 2 y 3  + yly2. These are 

Specht  modules  [5] for the partitions (n - 1, 1) and (n - 2, 2), and have characters 

[ n -  1, 1] and [ n -  2, 2]. 

Of course, a Specht module W ~ can be defined for each partition A of n ; its 

character is [A]. 

It is elementary that the multiplicity of [A] in an ideal L of the group algebra 

of S. is dim HomFs.(L, W~). Thus, to determine the multiplicity of [;t] in J., it is 

sufficient to calculate dim HomFs.(J,, W~), and this is what we shall do. Slight 

variations are employed to ease the numerical calculations. 

3. The proofs 

We start by giving an alternative proof of a known result to illustrate the new 

technique in action. 

LEMMA 3.1. For n >=3, the multiplicity o[ [ n ] in J. is 1, and the multiplicity o f  

[ n -  1,1] in J, is 2. 

PROOF. For 1 =< i =< n, define 0~ E HomFs.(Vn, M ('-''1)) by 

0, ( x ~ , ) . . .  x~(~ = y~0). 

Thus, 0~ "isolates the ith term in the monomial x .~ l ) ' "  x.(,)." 

Now, Lemma 4.1 of [2] implies that the general element of K. is a linear 

combination of terms of the form as3[ht, h2, ha]b, where a, b, hi, h2, h3 are 

monomials in some of the indeterminates xl,-  �9 -, x, and ahlh2h3b E V.. Hence 

(3.2) K. C Ker 01 n Ker 0,. 

But xzx2" �9 �9 x ._,x .  - xlx2 . �9 x.x._~ E Ker 0t\Ker 0, since n _-> 3. Therefore  

Ker 01 n Ker 0 . ~  Ker 01. Similarly, Ker 010 Ker O . :  Ker 0,. Now, V. /Ker  0i ~- 
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Im 0, = M ("-''') and the charac te r  of this is [n]  + [n - 1, 1]. Since [n] is a factor  of 

V, only once, it follows that 

(3.3) For  n _-> 3, the co-charac ter  of Ker  0~ f3 Ker  0. is In] + 2In - 1, 1]. 

By (3.2) and (3.3), the multiplicity of In] in J ,  is 1, and that of In - 1, 1] is at 

least 2, 

Since the multiplicity of [n - 1, I] in V, is n - 1, to comple te  the p roof  it is 

sufficient to exhibit n - 3 linearly independen t  e lements  of Hom,:s . (K. ,  W("-'")). 

Nothing is left to prove if n = 3, so we may assume n _-> 4. 

02, '" ", 0,_~ may be regarded  as e lements  of H o m ~ . ( K , ,  M ( " - " ' ) ,  and since we 

know that In] is not a factor  of K,, 0~,- . . ,0 ._~ in fact belong to 

HomFs. (K,, W(" -" ' ) .  

For  n -> 4, let v, = xsx6. �9 �9 x,+~s3[(x,x2), x3, x,]x,+,+,. . ,  x,. 

Consider  first the case when n = 4. Then  

V 0 = ( X | X 2 ) X 3 X  4 --  ( X l X 2 ) X 4 X  3 -[- X 4 ( X I X 2 ) X 3  - -  X 4 X 3 ( X I X 2 )  "Jr X 3 X 4 ( X l X 2 )  - -  X 3 ( X l X 2 ) X  4 

and 

(3.4) 

(3.5) 

02(Vo) =- y2 -- y2 + yl -- y3 + y4 -- y, = y4 -- y3, 

O,(vo) = O. 

For  n => 4, suppose 2 =< i =< n - 2. Then  

(3.4) :=> O, (v,-2) = y 4 -  y3, and 

(3.5)::> O,(v,-2)=O for l ~ j _ < - i - 1 .  

Hence  0 2 , " ' , 0 , - 2  are n - 3  linearly independen t  e lements  of 

Hom~s.(K, ,  W("-"')), as required.  

Replacing M ("-'''> by M("- '")  ~) W "") (which has character  IV]  + [2, 1"-2]), one  

can exhibit  for  n => 4 in a very similar way n linearly independen t  e lements  of 

HomFs~(Kn, M ( ~ - ' " ) Q  W('")). H e n c e  

LEMMA 3.6. For n >- 4, the multiplicity of  each of  [1"] and [2, 1 "-2] in .In is 

zero. 

Next,  for  n => 4 and 1 =< i < j = n, define 0, i E Homrs . (V , ,  M ("-2'2)) by 

0~, (x , , ) -  �9 �9 x,,~,)) = Y-,ff,,o). 

By considering the action on x~ �9 �9 �9 x,, it is clear that {O0 [ 1 _-< i < j = n} is a 

l inearly independen t  set. Since dim M(~-2'2) = (2 ) ,  we have const ructed  a basis of 

Hom~s.(V, ,  M("-2"2)). It is now possible to prove  the crucial result: 
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LEMMA 3.7 .  T h e  m u l t i p l i c i t y  o [  [3,  2] in  J5 is  z e ro .  

PROOF. L e t  u ,  = s , [ ( x , x z ) , x 3 ,  x , ] x s ,  u2 = s 3 [ ( x , x z ) , ( x 3 x , ) , x s ]  a n d  u3 = 

s 3 [ ( x , x 2 x 3 ) ,  x4, xs] .  T a b l e s  I ,  I I  a n d  I I  r e c o r d  t h e  i m a g e s  O~j(uk) f o r  k = 1 , 2  a n d  3 

r e s p e c t i v e l y .  ( F o r  e x a m p l e ,  t h e  s e c o n d  r o w  o f  T a b l e  I s t a t e s  t h a t  O~3(u~) = 2y~y3  - 

2 y t y 4 - -  y2y3 + y2y4.)  

TABLE I 

Suffices for y~yj ---, 12 13 14 15 23 24 25 34 35 45 

0~2 - 1 1 

013 2 - 2 - 1 ! 

014 - 1 1 1 - 1 

015 

023 - 1 1 1 - 1 

024 1 - 1 - 2 2 

025 - 1 I 

03, 1 - 1 

03s l - l 

04s 

TABLE II  

12 13 14 15 23 

012 1 

013 - 1 

014 1 - 1 - 1 

0~5 - 1 1 1 

023 1 - 1 1 

024 1 - 1 

025 1 - l 

O~ - 1  - 1  1 1 

035 - 1 

045 

24 25 34 35 45 

- I  

1 I - 1  

1 

- 1  - 1  

- 1  - I  

1 

- 1  

1 - 1  

- I  

1 - 1  

I 
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T A B L E  I I I  T A B L E  I V  

012 

013 

014 

023 

024 

025 

034 

035 

04~ 

12 13 14 15 

- 1  1 

1 - I  

1 - 1  

- 1  1 

- 1  1 

1 - 1  

23 24 25 34 35 45 

- 1  l 

l - 1  - 1  1 

1 - 1  

- 1  I - 1  1 

1 - 1  

1 - 1  - 1  1 

1 - 1  

1 1 

1 I 

1 1 

1 1 1 

1 

1 

1 1 

1 

1 1 

1 1 

Omitted numbers are zero. It is straightforward to check that the columns of 

the tables span a space of dimension 7, and that Table IV gives 3 columns which 

are orthogonal to all these. If 0 • Homvs,(Vs, M ~3"2)) and Ker 0 contains Ks, it 

follows that 0 must have the form 

0 = O/(012+ 013"1- 014+ 015 "~ 023 + 024-{- 025"+ 034"+ 035"+ 045) 

+fl(O~2+O~3+O14+O~s)+y(O~5+025+035+045), with a,[3, y ~ F .  
Thus 

O(x~x2x3x4xs) = a(y~y2 + yty3 + "" �9 + Y4ys) 

+/3(y~y2 + y~y3+ Y~y4+ y~ys) + y(ysy~ + ysy2+ ysy3+ ysy4). 

Therefore, Im 0 is a homomorphic image of MtS)OM" '~ )GM"")  and does 
not contain W ~3'2). 

Now, if J5 contained a left ideal isomorphic to W ~ we could take the 

projection onto this ideal, and produce an element of Homvs, (V~, M t3'2)) having 

Ks in its kernel and W ~3"2~ in its image. As we have shown that this is impossible, 

the lemma is proved. 

NOTE. An alternative proof of the last lemma is to take the standard basis 

e~,.--, es for W ~3"2~ and define ~ ~ Hom(Vs, W ~3"2)) by ~ ( x ~ . - - x s ) =  e~. Then 

check that the only linear combination of ~r �9 �9 Cs sending u ,  u2 and u3 to zero 

is 0. Although this proof involves spaces of dimension 5 and not 10, the 

numerical calculations take longer. 

Considering Homvs. (Vs, M ~ @ W~')), a similar proof gives 
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LEMMA 3.8. The multiplicity o f  [22, 1] in Js is zero. 

(Regev [4] gives an alternative method of proving this.) 

Somewhat easier to check is that 

{ 0 [ 0  E Homrs,(V4, M (2'2~) and K4 _C Ker0 and Im0 _D W (2'2)} 

is spanned by 012- 023 + 034. Therefore ./4 has precisely one factor isomorphic to 

W t2':). This, together with Lemmas 3.1 and 3.6 proves the second part of 

Theorem 1.1. 

We now finish the proof of Theorem 1.1, using a difficult result from Regev 

[4]; in the next section, we show how to complete the proof without quoting 

Regev's paper. 

The proof of Regev's theorem 3.13 gives the following inequality between the 

dimensions cn of Jn: 

(3.9) c , < n + c ~ _ l  for n->3.  

Since c4 = 9 (Theorem 1.1 (ii)), we have c5 < 14. But our results so far show 

that J5 = [5] + 2[4, 1] + a[3, 12] (with o~ an integer). Therefore c5 = 1 + 8 + a6, 

whence a = 0, proving Theorem 1.1 for the case n = 5. 

If n _-> 6, J. = [n] + 2[n - 1, 1] + Xn, say. Induction and the inequality (3.9) give 

degx ,  ~ n - 2 .  But X, contains neither [hi nor [1~], and for n _-> 5 the smallest 

irreducible degree of S, (other than 1) is n - 1  (Burnside [1], appendix). 

Therefore X, = 0, as required. 

The following corollary of Theorem 1.1 gives a simple test of whether or not a 

given element of Vn belongs to K.:  

COROLLARY 3.10. (i) For n = 3 or n _--> 5, K, = Ker 01 A Ker 0n. 

(ii) /(4 = Ker 01 f'l Ker 04 N Ker(012 - 023 + 034). 

PROOF. For n r  4, the corollary comes from (3.2) and (3.3). We have 

explained above why the extra Kernel arises when n = 4. 

In particular, we have the surprising 

COROLLARY 3.11. X l X 2 X 3 X 4 X 5  - -  X I X 2 X 4 X 3 X  5 and X I X 2 X 3 X 4 X  5 - -  X I X 3 X 2 X 4 X 5  E K. 

PROOF. Both elements are in Ker 01 tq Ker 05, and so belong to Ks. 

4. A basis for K. ( n - 5 )  

In this section, we construct a basis for Ker 01 fq Ker 0,. In view of Corollary 

3.10, this will be a basis for K, when n _-> 5. The basis provides an alternative 

proof for Theorem 1.1. 
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DEFINITION.  Put a partial order ~ on the set of monomials in V, by 

x<,~...x,,~,~ x,o~"'x,~,fiff for all j ~  o'(i)<=~ r(i). 
i = 1  i = 1  

This is undoubtedly the "correct" ordering on monomials (we use the symbol 

by analogy with the standard notation for the dominance order on Young 

disgrams), but the reader may prefer to select a total lexicographic order which 

contains " ~ " 

Assume n _-> 4. 

Let 

PT={TrES, 131<i<j<n  with r and 

P~ = {Tr E S, [T r(1)> 7r(2)< 7 r ( 3 ) < . . .  < 7 r ( n -  1)> ~r(n)}. 

An easy c a l c u l a t i o n g i v e s [ P ? l = n ! - n ( n  1) a n d ] P "  = - 2[ n - 3 + ( n - 2 )  2. 

For r define e, as follows. Choose l < i < j < n  with 7r(i)>~'O') 

and let 
e , ,  = x , ~ o )  �9 �9 �9 x ~ ( i )  �9 �9 �9 x ~ q )  �9 �9 �9 x ~ . ( n ) -  x ~ . o )  �9 �9 �9 x ~ ( j  ) �9 �9 �9 x~.(o �9 �9 �9 x ~ f n )  

[=  x , o ) " "  x,,t.)(1,. - ( i , / ) ) ,  recalling that right multiplication by an element of 
S. effects a place permutation]. 

For r E PL define e,~ by 

e.n- ~ X c r ( l ) X ' r r ( 2 )  " " " X c r ( n - - l ) X r t ( , )  - -  X ~ ( 2 ) X ' t r ( 1 )  " " ' X w ( n - l ) X w ( . )  

- -  X . r r ( 1 ) X w ( 2 ) "  " " X c r ( n ) X w ( n - l ) " 4 -  X . r r ( 2 ) X . t r ( l ) "  " " X r r ( n ) X c r ( n - l )  

[ = x=o)""" x<,,(ls, - (1,2))(ls, - (n - 1, n))]. 

Now, {e= 17r E P~' U P~} _C Ker 01 f3 Ker 0.. But e,, involves x, 

(: = X<l)" �9 �9 x,,r and the other monomials x, involved in e= satisfy ~- t> 7r. Since 

the ~-'s are all different, we have constructed a linearly independent subset of 

Ker 01N Ker 0.. But dim(KerOlOKerO,)=n!-l-2(n-1) ,  by (3.3), 

= I P?I+]P~ I, and so we have obtained a basis. (An easy alternative way of 

seeing that we have a spanning set is to check that a last monomial (in the t> 

order) involved in an element of Ker 0~ tq Ker 0, must belong to P~' U PL)  

Another proof of Theorem 1.t goes as follows. First verify that [3, 12] is not in 

Js, either by using the techniques above, or utilizing the note added in proof by 

Regev [4]. Then Js must be [5] + 2[4, 1], and Ks = Ker 01 f3 Ker 05. 

Assume n _-> 5 and K, = Ker 0~ r3 Ker 0,. Then for ~r E S,, 

x . ~ o )  �9 �9 �9 x , , < , )  �9 �9 �9 x . ~ q )  �9 �9 �9 x . , ( . )  - x , ~ , )  �9 �9 �9 x , ~ o )  �9 �9 �9 x , ~ 0 )  �9 �9 �9 x , . ( . )  ~ K .  

Therefore, 
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X ~ ( l )  " " " X ~ - ( i )  " " " X~r ( j )  " " " X r r ( n ) X n + l  - -  X . n - ( l )  " " " X ~ r ( j )  " " " X ' r r ( i )  " " " X ~ r ( n ) X n + l  

and 

X ~ + m X = o )  " " " X ~ - ( 1 )  " " " X ~ ( j )  " " " X ~ . ( , )  - -  X n + t X ~ o )  " " " X ~ ( i  ) " " " X ~ - ( i )  " " " X = ( n )  

belong to K. Hence,  renumber ing  the variables, K,+I contains all e lements  of the 

form e, with rr in P?+' .  

Also, for rr E S.+1, 

X + , l , X . , ~ >  " " ( x . , . _ l ~ X + ~ . ~ ) x + , ~  x ~  . . " ( x + , . ~ l ~ X + , ~ 2 4 7  

X ~ - ( l ) X ~ ( 2 )  " " " X r r ( n + l ) X r r ( n - l ) X ~ r ( n ) -  X r r ( l ) X ~ ( 2 )  " " " X r r ( n - l ) X r r ( n + l ) X ~ r ( n )  

and 

X ~ ' ( 2 ) X T r ( I ) "  " " X r r ( n - - 1 ) X r t ( n + l ) X r t ( n ) -  X r r ( 2 ) X T r ( l ) "  " " X r r ( n + l ) X r t ( n - - l ) X r r ( n )  

all belong to K. Adding  these, we get 

X ~ ' ( l ) X ~ ( 2 )  " " " X r t ( n - 1 ) X r r ( n ) X ~ r ( n + l ) -  X r r ( 2 ) X ' n ' ( 1 )  " " " X r t ( n - l ) X r r ( n ) X r r ( n + l )  

- -  X . n - ( 1 ) X . n - ( 2 )  " " " Xcr (n  l ) X ~ r ( n + l ) X ~ ( n ) - ~  X . n - ( 2 ) X ~ r ( l )  " ~ " X r r ( n - 1 ) X ~ r ( n + l ) X T r ( n )  

belongs to K. In particular, K contains all e lements  of the form e~ with ~" in 

P~+~. Therefore ,  K.+a contains a basis of Ker  01 n Ker 0.+1 and by (3.2) K~+I = 

Ker 01 (3 Ker 0.+1. By induction, and (3.3), T h e o r e m  1.1 is proved.  

Finally, it should be noted that Conjec ture  2 of Regev [4] is false for d = 3 and 

n => 4, since X l X 2 .  �9 �9 X . _ l X . X , + t  - x l x : .  �9 �9 x , x , - l x , + l  E K , + I  (by Corol lary 3.10) but 

XlX2 �9 �9 �9 x , _ l x ,  - x l x 2  �9 �9 �9 x,xM t ~ Ker 0. _D K,. 
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