A NOTE ON THE *T*-IDEAL GENERATED BY $s_3[x_1, x_2, x_3]$

by G. D. JAMES

ABSTRACT

The co-characters of the T-ideal generated by the standard identity $s_3[x_1, x_2, x_3]$ are determined.

1. Introduction

Regev [4] has shown that for $n \ge 9$, the co-character of the *T*-ideal *K* generated by the standard identity $s_3[x_1, x_2, x_3]$ over a field *F* of characteristic zero is $[n] + 2[n - 1, 1] + \alpha[n - 2, 2] + \beta[2^2, 1^{n-4}]$ where $\alpha + \beta \le 1$. In this note we introduce a new technique, and use it to determine the co-characters exactly.

The space V_n of multilinear polynomials of degree n in x_1, \dots, x_n may be identified with the group algebra of the symmetric group S_n over F[3], and the *n*th co-character is then, by definition, the character of V_n , modulo the left ideal $K_n = K \cap V_n$. In fact, we shall obtain a precise description of K_n , which gives an easy test whether or not a given element of V_n is in K_n .

Since char F = 0, $V_n = K_n \bigoplus J_n$ for some left ideal J_n , and the problem is to determine the character of J_n . Since the multiplicity of a character $[\lambda]$ in V_n is deg $[\lambda]$, the problem is equivalent to that of finding the character of K_n . We shall prove

THEOREM 1.1. (i) For $n \le 2$, $K_n = 0$. (ii) For n = 4, $J_4 = [4] + 2[3, 1] + [2^2]$. (iii) For n = 3 or $n \ge 5$, $J_n = [n] + 2[n - 1, 1]$.

The new results are those for $n \ge 5$. The theorem is trivial for $n \le 3$, and we merely indicate how to apply our method to obtain another proof for the case n = 4.

Received March 3, 1977

2. Outline of the method

DEFINITIONS. Let y_1, \dots, y_n be *n* commuting variables. Define the FS_n -modules $M^{(n-1,1)}$ and $M^{(n-2,2)}$ by

$$M^{(n-1,1)} = \operatorname{Sp}_F\{y_i \mid 1 \le i \le n\}. \text{ For } \pi \in S_n, \text{ let } \pi y_i = y_{\pi(i)}.$$
$$M^{(n-2,2)} = \operatorname{Sp}_F\{y_i y_j \mid 1 \le i < j \le n\}. \text{ Let } \pi y_i y_i = y_{\pi(i)} y_{\pi(j)}.$$

Then $M^{(n-1,1)}$ and $M^{(n-2,2)}$ are the permutation modules of S_n on the Young subgroups $S_{n-1} \times S_1$ and $S_{n-2} \times S_2$ respectively. It is well-known that their characters are [n] + [n-1,1] and [n] + [n-1,1] + [n-2,2] respectively.

Let $W^{(n-1,1)}$ be the submodule of $M^{(n-1,1)}$ generated by $y_2 - y_1$, and $W^{(n-2,2)}$ be the submodule of $M^{(n-2,2)}$ generated by $y_3y_4 - y_1y_4 - y_2y_3 + y_1y_2$. These are *Specht modules* [5] for the partitions (n - 1, 1) and (n - 2, 2), and have characters [n - 1, 1] and [n - 2, 2].

Of course, a Specht module W^{λ} can be defined for each partition λ of n; its character is $[\lambda]$.

It is elementary that the multiplicity of $[\lambda]$ in an ideal L of the group algebra of S_n is dim Hom_{FS_n}(L, W^{λ}). Thus, to determine the multiplicity of $[\lambda]$ in J_n , it is sufficient to calculate dim Hom_{FS_n}(J_n , W^{λ}), and this is what we shall do. Slight variations are employed to ease the numerical calculations.

3. The proofs

We start by giving an alternative proof of a known result to illustrate the new technique in action.

LEMMA 3.1. For $n \ge 3$, the multiplicity of [n] in J_n is 1, and the multiplicity of [n-1,1] in J_n is 2.

PROOF. For $1 \le i \le n$, define $\theta_i \in \text{Hom}_{FS_n}(V_n, M^{(n-1,1)})$ by

$$\theta_i(x_{\pi(1)}\cdots x_{\pi(n)})=y_{\pi(i)}.$$

Thus, θ_i "isolates the *i*th term in the monomial $x_{\pi(1)} \cdots x_{\pi(n)}$."

Now, Lemma 4.1 of [2] implies that the general element of K_n is a linear combination of terms of the form $as_3[h_1, h_2, h_3]b$, where a, b, h_1, h_2, h_3 are monomials in some of the indeterminates x_1, \dots, x_n and $ah_1h_2h_3b \in V_n$. Hence

$$(3.2) K_n \subseteq \operatorname{Ker} \theta_1 \cap \operatorname{Ker} \theta_n.$$

But $x_1x_2\cdots x_{n-1}x_n - x_1x_2\cdots x_nx_{n-1} \in \text{Ker } \theta_1 \setminus \text{Ker } \theta_n$ since $n \ge 3$. Therefore Ker $\theta_1 \cap \text{Ker } \theta_n \neq \text{Ker } \theta_1$. Similarly, Ker $\theta_1 \cap \text{Ker } \theta_n \neq \text{Ker } \theta_n$. Now, $V_n/\text{Ker } \theta_i \cong$ Im $\theta_i = M^{(n-1,1)}$ and the character of this is [n] + [n-1, 1]. Since [n] is a factor of V_n only once, it follows that

(3.3) For $n \ge 3$, the co-character of Ker $\theta_1 \cap$ Ker θ_n is [n] + 2[n - 1, 1].

By (3.2) and (3.3), the multiplicity of [n] in J_n is 1, and that of [n-1, 1] is at least 2.

Since the multiplicity of [n-1,1] in V_n is n-1, to complete the proof it is sufficient to exhibit n-3 linearly independent elements of $\operatorname{Hom}_{FS_n}(K_n, W^{(n-1,1)})$. Nothing is left to prove if n = 3, so we may assume $n \ge 4$.

 $\theta_2, \dots, \theta_{n-2}$ may be regarded as elements of $\operatorname{Hom}_{FS_n}(K_n, M^{(n-1,1)})$, and since we know that [n] is not a factor of $K_n, \theta_2, \dots, \theta_{n-2}$ in fact belong to $\operatorname{Hom}_{FS_n}(K_n, W^{(n-1,1)})$.

For $n \ge 4$, let $v_i = x_5 x_6 \cdots x_{4+i} s_3[(x_1 x_2), x_3, x_4] x_{4+i+1} \cdots x_n$. Consider first the case when n = 4. Then

 $v_0 = (x_1 x_2) x_3 x_4 - (x_1 x_2) x_4 x_3 + x_4 (x_1 x_2) x_3 - x_4 x_3 (x_1 x_2) + x_3 x_4 (x_1 x_2) - x_3 (x_1 x_2) x_4$

and

(3.4)
$$\theta_2(v_0) = y_2 - y_2 + y_1 - y_3 + y_4 - y_1 = y_4 - y_3,$$

$$\theta_1(v_0) = 0.$$

For $n \ge 4$, suppose $2 \le i \le n - 2$. Then

 $(3.4) \Rightarrow \theta_i (v_{i-2}) = y_4 - y_3, \quad \text{and}$ $(3.5) \Rightarrow \theta_i (v_{i-2}) = 0 \quad \text{for} \quad 1 \le i \le i - 1.$

Hence $\theta_2, \dots, \theta_{n-2}$ are n-3 linearly independent elements of Hom_{FS_n}($K_n, W^{(n-1,1)}$), as required.

Replacing $M^{(n-1,1)}$ by $M^{(n-1,1)} \otimes W^{(1^m)}$ (which has character $[1^n] + [2, 1^{n-2}]$), one can exhibit for $n \ge 4$ in a very similar way n linearly independent elements of $\operatorname{Hom}_{FS_n}(K_n, M^{(n-1,1)} \otimes W^{(1^m)})$. Hence

LEMMA 3.6. For $n \ge 4$, the multiplicity of each of $[1^n]$ and $[2, 1^{n-2}]$ in J_n is zero.

Next, for $n \ge 4$ and $1 \le i < j \le n$, define $\theta_{ij} \in \operatorname{Hom}_{FS_n}(V_n, M^{(n-2,2)})$ by $\theta_{ij}(x_{\pi(1)} \cdots x_{\pi(n)}) = y_{\pi(i)}y_{\pi(j)}.$

By considering the action on $x_1 \cdots x_n$, it is clear that $\{\theta_{ij} | 1 \le i < j \le n\}$ is a linearly independent set. Since dim $M^{(n-2,2)} = \binom{n}{2}$, we have constructed a basis of $\operatorname{Hom}_{FS_n}(V_n, M^{(n-2,2)})$. It is now possible to prove the crucial result:

LEMMA 3.7. The multiplicity of [3,2] in J_5 is zero.

PROOF. Let $u_1 = s_3[(x_1x_2), x_3, x_4]x_5$, $u_2 = s_3[(x_1x_2), (x_3x_4), x_5]$ and $u_3 = s_3[(x_1x_2x_3), x_4, x_5]$. Tables I, II and II record the images $\theta_{ij}(u_k)$ for k = 1, 2 and 3 respectively. (For example, the second row of Table I states that $\theta_{13}(u_1) = 2y_1y_3 - 2y_1y_4 - y_2y_3 + y_2y_4$.)

Suffices	for	$y_i y_i \rightarrow 0$	12 13	14	15	23	24	25	34	35	45
		θ_{12}	- 1	1							
		θ_{13}	2	- 2		- 1	1				
		θ_{14}	- 1	1		1	- 1				
		θ_{15}									
		θ_{23}	- 1	1		1	- 1				
		θ_{24}	1	- 1		- 2	2				
		θ_{25}								-1	1
		θ_{34}				1	- 1				
		θ_{35}								1	- 1
		θ_{45}									

TABLE I

Table	Π

	12	13	14	15	23	24	25	34	35	45
θ_{12}				1					- 1	
θ_{13}				- 1			1		1	- 1
θ_{14}			1	- 1	- 1				1	
θ_{15}			- 1	1	1		- 1		- 1	1
θ_{23}	1		- 1		1		- 1	- 1		1
θ_{24}			1		- 1					
θ_{25}			1		- 1		1			- 1
θ_{34}	- 1		- 1	1	1			1	- 1	
θ_{35}				- 1			1		1	- 1
θ_{45}							- 1			1

	TABLE III										Ταβι		
	12	13	14	15	23	24	25	34	35	45			
$\boldsymbol{\theta}_{12}$			- 1	1							1	1	
θ_{13}			1	- 1		~ 1	1				1	1	
θ_{14}			1	- 1		1	- 1	- 1	1		1	1	
θ_{15}			- 1	1				1	- 1		1	1	1
θ_{23}			- 1	1							1		
θ_{24}											1		
θ_{25}			1	- 1		- 1	1	- 1	1		1		1
θ_{34}								1	- 1		1		
θ_{35}						1	- 1	- 1	1		1		1
θ_{45}	···							1	- 1		1		1

Omitted numbers are zero. It is straightforward to check that the columns of the tables span a space of dimension 7, and that Table IV gives 3 columns which are orthogonal to all these. If $\theta \in \text{Hom}_{FS_n}(V_5, M^{(3,2)})$ and Ker θ contains K_5 , it follows that θ must have the form

$$\theta = \alpha (\theta_{12} + \theta_{13} + \theta_{14} + \theta_{15} + \theta_{23} + \theta_{24} + \theta_{25} + \theta_{34} + \theta_{35} + \theta_{45}) + \beta (\theta_{12} + \theta_{13} + \theta_{14} + \theta_{15}) + \gamma (\theta_{15} + \theta_{25} + \theta_{35} + \theta_{45}), \quad \text{with} \quad \alpha, \beta, \gamma \in F.$$

Thus
$$\theta (x_1 x_2 x_3 x_4 x_5) = \alpha (y_1 y_2 + y_1 y_3 + \dots + y_4 y_5)$$

+ $\beta(y_1y_2 + y_1y_3 + y_1y_4 + y_1y_5) + \gamma(y_5y_1 + y_5y_2 + y_5y_3 + y_5y_4).$

Therefore, Im θ is a homomorphic image of $M^{(5)} \oplus M^{(4,1)} \oplus M^{(4,1)}$ and does not contain $W^{(3,2)}$.

Now, if J_5 contained a left ideal isomorphic to $W^{(3,2)}$, we could take the projection onto this ideal, and produce an element of Hom_{FS_n}(V_5 , $M^{(3,2)}$) having K_5 in its kernel and $W^{(3,2)}$ in its image. As we have shown that this is impossible, the lemma is proved.

NOTE. An alternative proof of the last lemma is to take the standard basis e_1, \dots, e_5 for $W^{(3,2)}$ and define $\varphi_i \in \text{Hom}(V_5, W^{(3,2)})$ by $\varphi_i(x_1 \cdots x_5) = e_i$. Then check that the only linear combination of $\varphi_1, \dots, \varphi_5$ sending u_1, u_2 and u_3 to zero is 0. Although this proof involves spaces of dimension 5 and not 10, the numerical calculations take longer.

Considering Hom_{FS_n} (V_5 , $M^{(3,2)} \otimes W^{(1^5)}$), a similar proof gives

LEMMA 3.8. The multiplicity of $[2^2, 1]$ in J_5 is zero.

(Regev [4] gives an alternative method of proving this.) Somewhat easier to check is that

$$\{\theta \mid \theta \in \operatorname{Hom}_{FS_4}(V_4, M^{(2,2)}) \text{ and } K_4 \subseteq \operatorname{Ker} \theta \text{ and } \operatorname{Im} \theta \supseteq W^{(2,2)}\}$$

is spanned by $\theta_{12} - \theta_{23} + \theta_{34}$. Therefore J_4 has precisely one factor isomorphic to $W^{(2,2)}$. This, together with Lemmas 3.1 and 3.6 proves the second part of Theorem 1.1.

We now finish the proof of Theorem 1.1, using a difficult result from Regev [4]; in the next section, we show how to complete the proof without quoting Regev's paper.

The proof of Regev's theorem 3.13 gives the following inequality between the dimensions c_n of J_n :

$$(3.9) c_n \leq n + c_{n-1} \quad \text{for} \quad n \geq 3.$$

Since $c_4 = 9$ (Theorem 1.1 (ii)), we have $c_5 \le 14$. But our results so far show that $J_5 = [5] + 2[4, 1] + \alpha[3, 1^2]$ (with α an integer). Therefore $c_5 = 1 + 8 + \alpha 6$, whence $\alpha = 0$, proving Theorem 1.1 for the case n = 5.

If $n \ge 6$, $J_n = [n] + 2[n - 1, 1] + \chi_n$, say. Induction and the inequality (3.9) give deg $\chi_n \le n - 2$. But χ_n contains neither [n] nor $[1^n]$, and for $n \ge 5$ the smallest irreducible degree of S_n (other than 1) is n - 1 (Burnside [1], appendix). Therefore $\chi_n = 0$, as required.

The following corollary of Theorem 1.1 gives a simple test of whether or not a given element of V_n belongs to K_n :

COROLLARY 3.10. (i) For n = 3 or $n \ge 5$, $K_n = \operatorname{Ker} \theta_1 \cap \operatorname{Ker} \theta_n$. (ii) $K_4 = \operatorname{Ker} \theta_1 \cap \operatorname{Ker} \theta_4 \cap \operatorname{Ker} (\theta_{12} - \theta_{23} + \theta_{34})$.

PROOF. For $n \neq 4$, the corollary comes from (3.2) and (3.3). We have explained above why the extra Kernel arises when n = 4.

In particular, we have the surprising

COROLLARY 3.11.
$$x_1x_2x_3x_4x_5 - x_1x_2x_4x_3x_5$$
 and $x_1x_2x_3x_4x_5 - x_1x_3x_2x_4x_5 \in K$.

PROOF. Both elements are in Ker $\theta_1 \cap$ Ker θ_5 , and so belong to K_5 .

4. A basis for K_n $(n \ge 5)$

In this section, we construct a basis for Ker $\theta_1 \cap$ Ker θ_n . In view of Corollary 3.10, this will be a basis for K_n when $n \ge 5$. The basis provides an alternative proof for Theorem 1.1.

DEFINITION. Put a partial order \ge on the set of monomials in V_n by

$$x_{\sigma(1)}\cdots x_{\sigma(n)} \bowtie x_{\tau(1)}\cdots x_{\tau(n)}$$
 iff for all $j\sum_{i=1}^{j}\sigma(i) \le \sum_{i=1}^{j}\tau(i)$.

This is undoubtedly the "correct" ordering on monomials (we use the symbol \ge by analogy with the standard notation for the dominance order on Young disgrams), but the reader may prefer to select a total lexicographic order which contains " \ge ".

Assume $n \ge 4$.

Let

$$P_1^n = \{ \pi \in S_n \, | \, \exists 1 < i < j < n \quad \text{with} \quad \pi(i) > \pi(j) \} \text{ and}$$
$$P_2^n = \{ \pi \in S_n \, | \, \pi(1) > \pi(2) < \pi(3) < \cdots < \pi(n-1) > \pi(n) \}.$$

An easy calculation gives $|P_1^n| = n! - n(n-1)$ and $|P_2^n| = n - 3 + (n-2)^2$.

For $\pi \in P_1^n$, define e_{π} as follows. Choose 1 < i < j < n with $\pi(i) > \pi(j)$ and let

$$e_{\pi} = x_{\pi(1)} \cdots x_{\pi(i)} \cdots x_{\pi(j)} \cdots x_{\pi(n)} - x_{\pi(1)} \cdots x_{\pi(j)} \cdots x_{\pi(i)} \cdots x_{\pi(n)}$$

 $[=x_{\pi(1)}\cdots x_{\pi(n)}(1_{s_n}-(i,j)),$ recalling that right multiplication by an element of S_n effects a *place* permutation].

For $\pi \in P_2^n$, define e_{π} by

$$e_{\pi} = x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n-1)} x_{\pi(n)} - x_{\pi(2)} x_{\pi(1)} \cdots x_{\pi(n-1)} x_{\pi(n)} - x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(n)} x_{\pi(n-1)} + x_{\pi(2)} x_{\pi(1)} \cdots x_{\pi(n)} x_{\pi(n-1)}$$

 $[=x_{\pi(1)}\cdots x_{\pi(n)}(1_{S_n}-(1,2))(1_{S_n}-(n-1,n))].$

Now, $\{e_{\pi} \mid \pi \in P_1^n \cup P_2^n\} \subseteq \operatorname{Ker} \theta_1 \cap \operatorname{Ker} \theta_n$. But e_{π} involves x_{π} (:= $x_{\pi(1)} \cdots x_{\pi(n)}$) and the other monomials x_{τ} involved in e_{π} satisfy $\tau \triangleright \pi$. Since the π 's are all different, we have constructed a linearly independent subset of Ker $\theta_1 \cap \operatorname{Ker} \theta_n$. But dim (Ker $\theta_1 \cap \operatorname{Ker} \theta_n$) = n! - 1 - 2(n - 1), by (3.3), = $|P_1^n| + |P_2^n|$, and so we have obtained a basis. (An easy alternative way of seeing that we have a spanning set is to check that a last monomial (in the \triangleright order) involved in an element of Ker $\theta_1 \cap \operatorname{Ker} \theta_n$ must belong to $P_1^n \cup P_2^n$.)

Another proof of Theorem 1.1 goes as follows. First verify that $[3, 1^2]$ is not in J_5 , either by using the techniques above, or utilizing the note added in proof by Regev [4]. Then J_5 must be [5] + 2[4, 1], and $K_5 = \text{Ker } \theta_1 \cap \text{Ker } \theta_5$.

Assume $n \ge 5$ and $K_n = \operatorname{Ker} \theta_1 \cap \operatorname{Ker} \theta_n$. Then for $\pi \in S_n$,

$$x_{\pi(1)}\cdots x_{\pi(i)}\cdots x_{\pi(j)}\cdots x_{\pi(n)}-x_{\pi(1)}\cdots x_{\pi(j)}\cdots x_{\pi(i)}\cdots x_{\pi(n)}\in K.$$

Therefore,

$$x_{\pi(1)} \cdots x_{\pi(i)} \cdots x_{\pi(j)} \cdots x_{\pi(n)} x_{n+1} - x_{\pi(1)} \cdots x_{\pi(j)} \cdots x_{\pi(i)} \cdots x_{\pi(n)} x_{n+1}$$

and

$$x_{n+1}x_{\pi(1)}\cdots x_{\pi(i)}\cdots x_{\pi(i)}\cdots x_{\pi(n)}-x_{n+1}x_{\pi(1)}\cdots x_{\pi(i)}\cdots x_{\pi(i)}\cdots x_{\pi(n)}$$

belong to K. Hence, renumbering the variables, K_{n+1} contains all elements of the form e_{π} with π in P_1^{n+1} .

Also, for $\pi \in S_{n+1}$,

$$\begin{aligned} x_{\pi(1)}x_{\pi(2)}\cdots(x_{\pi(n-1)}x_{\pi(n)})x_{\pi(n+1)}-x_{\pi(2)}x_{\pi(1)}\cdots(x_{\pi(n-1)}x_{\pi(n)})x_{\pi(n+1)}\\ &-x_{\pi(1)}x_{\pi(2)}\cdots x_{\pi(n+1)}(x_{\pi(n-1)}x_{\pi(n)})+x_{\pi(2)}x_{\pi(1)}\cdots x_{\pi(n+1)}(x_{\pi(n-1)}x_{\pi(n)}),\\ x_{\pi(1)}x_{\pi(2)}\cdots x_{\pi(n+1)}x_{\pi(n-1)}x_{\pi(n)}-x_{\pi(1)}x_{\pi(2)}\cdots x_{\pi(n-1)}x_{\pi(n+1)}x_{\pi(n)}\end{aligned}$$

and

$$x_{\pi(2)}x_{\pi(1)}\cdots x_{\pi(n-1)}x_{\pi(n+1)}x_{\pi(n)}-x_{\pi(2)}x_{\pi(1)}\cdots x_{\pi(n+1)}x_{\pi(n-1)}x_{\pi(n)}$$

all belong to K. Adding these, we get

$$x_{\pi(1)}x_{\pi(2)}\cdots x_{\pi(n-1)}x_{\pi(n)}x_{\pi(n+1)} - x_{\pi(2)}x_{\pi(1)}\cdots x_{\pi(n-1)}x_{\pi(n)}x_{\pi(n+1)}$$

- $x_{\pi(1)}x_{\pi(2)}\cdots x_{\pi(n-1)}x_{\pi(n+1)}x_{\pi(n)} + x_{\pi(2)}x_{\pi(1)}\cdots x_{\pi(n-1)}x_{\pi(n+1)}x_{\pi(n)}$

belongs to K. In particular, K contains all elements of the form e_{π} with π in P_2^{n+1} . Therefore, K_{n+1} contains a basis of Ker $\theta_1 \cap$ Ker θ_{n+1} and by (3.2) $K_{n+1} =$ Ker $\theta_1 \cap$ Ker θ_{n+1} . By induction, and (3.3), Theorem 1.1 is proved.

Finally, it should be noted that Conjecture 2 of Regev [4] is false for d = 3 and $n \ge 4$, since $x_1x_2 \cdots x_{n-1}x_nx_{n+1} - x_1x_2 \cdots x_nx_{n-1}x_{n+1} \in K_{n+1}$ (by Corollary 3.10) but $x_1x_2 \cdots x_nx_{n-1}x_n - x_1x_2 \cdots x_nx_{n-1} \notin \text{Ker } \theta_n \supseteq K_n$.

References

1. W. Burnside, Theory of Groups of Finite Order, 2nd ed., Cambridge, 1911.

2. D. Krakowski and A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973), 429-438.

3. J. B. Olsson and A. Regev, An application of representation theory to P.I. algebras, Proc. Amer. Math. Soc. 55 (1976), 253-257.

4. A. Regev, The T-ideal generated by the standard identity $s_3[x_1, x_2, x_3]$, Israel J. Math. 26 (1977), 105-125.

5. W. Specht, Die irreduziblen darstellungen der symmetrischen gruppe, Math. Z. 39 (1935), 696-711.

DEPARTMENT OF PURE MATHEMATICS CAMBRIDGE UNIVERSITY CAMBRIDGE CB21SB ENGLAND